Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cancer Med ; 13(6): e7066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523525

RESUMO

INTRODUCTION: In April 2019, French authorities mandated dihydropyrimidine dehydrogenase (DPD) screening, specifically testing uracilemia, to mitigate the risk of toxicity associated with fluoropyrimidine-based chemotherapy. However, this subject is still of debate as there is no consensus on a standardized DPD deficiency screening test. We conducted a real-life retrospective study with the aim of assessing the impact of DPD screening on the occurrence of severe toxicity and exploring the potential benefits of complete genotyping using next-generation sequencing. METHODS: All adult patients consecutively treated with 5-fluorouracil (5-FU) or its oral prodrug at six cancer centers between March 2018 and February 2019 were considered for inclusion. Dihydropyrimidine dehydrogenase deficiency screening included gene encoding DPD (DPYD) genotyping using complete genome sequencing and DPD phenotyping (uracilemia or dihydrouracilemia/uracilemia ratio) or both tests. Associations between each DPD screening method and (i) severe (grade ≥3) early toxicity and (ii) fluoropyrimidine dose reduction in the second chemotherapy cycle were evaluated using multivariable logistic regression analysis. Furthermore, we assessed the concordance between DPD genotype and phenotype using Cohen's kappa. RESULTS: A total of 551 patients were included. Most patients were tested for DPD deficiency (86%) including DPYD genotyping only (6%), DPD phenotyping only (8%), or both (72%). Complete DPD deficiency was not detected in the study population. Severe early toxicity events were observed in 73 patients (13%), with two patients (0.30%) presenting grade 5 toxicity. Despite the numerically higher toxicity rate in untested patients, the occurrence of severe toxicity was not significantly associated with the DPD screening method (p = 0.69). Concordance between the DPD genotype and phenotype was weak (Cohen's kappa of 0.14). CONCLUSION: Due to insufficient numbers, our study was not able to demonstrate any added value of DPYD genotyping using complete genome sequencing to prevent 5-FU toxicity. The optimal strategy for DPD screening before fluoropyrimidine-based chemotherapy requires further clinical evaluation.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Adulto , Humanos , Di-Hidrouracila Desidrogenase (NADP)/genética , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Antimetabólitos Antineoplásicos/uso terapêutico , Estudos Retrospectivos , Capecitabina , Genótipo , Fluoruracila
2.
Clin Transl Sci ; 16(12): 2700-2708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37877594

RESUMO

This study explored the acceptability of a novel pharmacist-led pharmacogenetics (PGx) screening program among patients with cancer and healthcare professionals (HCPs) taking part in a multicenter clinical trial of PGx testing (PACIFIC-PGx ANZCTR:12621000251820). Medical oncologists, oncology pharmacists, and patients with cancer from across four sites (metropolitan/regional), took part in an observational, cross-sectional survey. Participants were recruited from the multicenter trial. Two study-specific surveys were developed to inform implementation strategies for scaled and sustainable translation into routine clinical care: one consisting of 21 questions targeting HCPs and one consisting of 17 questions targeting patients. Responses were collected from 24 HCPs and 288 patients. The 5-to-7-day PGx results turnaround time was acceptable to HCP (100%) and patients (69%). Most HCPs (92%) indicated that it was appropriate for the PGx clinical pharmacist to provide results to patients. Patients reported equal preference for receiving PGx results from a doctor/pharmacist. Patients and HCPs highly rated the pharmacist-led PGx service. HCPs were overall accepting of the program, with the majority (96%) willing to offer PGx testing to their patients beyond the trial. HCPs identified that lack of financial reimbursements (62%) and lack of infrastructure (38%) were the main reasons likely to prevent/slow the implementation of PGx screening program into routine clinical care. Survey data have shown overall acceptability from patients and HCPs participating in the PGx Program. Barriers to implementation of PGx testing in routine care have been identified, providing opportunity to develop targeted implementation strategies for scaled translation into routine practice.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Neoplasias , Testes Farmacogenômicos , Humanos , Estudos Transversais , Pessoal de Saúde , Aceitação pelo Paciente de Cuidados de Saúde , Farmacogenética , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética
3.
Clin Chim Acta ; 543: 117326, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011867

RESUMO

BACKGROUND: Pretherapeutic screening for dihydropyrimidine dehydrogenase (DPD) deficiency based on the measurement of plasma uracil ([U]) is recommended prior to the administration of fluoropyrimidine-based chemotherapy. Cancer patients frequently have impaired kidney function, but the extent to which kidney function decline impacts [U] levels has not been comprehensively investigated. METHODS: We assessed the relationship between DPD phenotypes and estimated glomerular filtration rate (eGFR) in 1751 patients who benefited on the same day from a screening for DPD deficiency by measuring [U] and [UH2]:[U], and an evaluation of eGFR. The impact of a kidney function decline on [U] levels and [UH2]:[U] ratio was evaluated. RESULTS: We observed that [U] was negatively correlated with eGFR, indicating that [U] levels increase as eGFR declines. For each ml/min of eGFR decrease, [U] value increased in average by 0.035 ng/ml. Using the KDIGO classification of chronic kidney disease (CKD), we observed that [U] values >16 ng/ml (DPD deficiency) were measured in 3.6 % and 4.4 % of stage 1 and 2 CKD (normal-high eGFR, >60 ml/min/1.73 m2) patients, but in 6.7 % of stage 3A CKD patients (45 to 59 ml/min/1.73 m2), 25% of stage 3B CKD patients (30 to 44 ml/min/1.73 m2), 22.7% of stage 4 CKD patients (15 to 29 ml/min/1.73 m2 and 26.7% of stage 5 CKD patients (<15 ml/min/1.73 m2). [UH2]:[U] ratios were not impacted by kidney function. CONCLUSION: DPD phenotyping based on the measurement of plasma [U] in patients with decreased eGFR is associated with an exceedingly high rate of false positives when kidney function decline reaches 45 ml/minute/1.73 m2 of eGFR or lower. In this population, an alternative strategy that remain to be evaluated would be to measure the [UH2]:[U] ratio in addition to [U].


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Neoplasias , Insuficiência Renal Crônica , Humanos , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Di-Hidrouracila Desidrogenase (NADP)/genética , Uracila , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/complicações , Neoplasias/complicações , Taxa de Filtração Glomerular
5.
Br J Clin Pharmacol ; 89(8): 2446-2457, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36918744

RESUMO

AIM: Dihydropyrimidine dehydrogenase (DPD) deficiency can be detected by phenotyping (measurement of plasma uracil [U], with U ≥ 16 µg/L defining a partial deficiency) and/or by genotyping (screening for the four most frequent DPYD variants). We aimed to determine the proportion of discrepancies between phenotypic and genotypic approaches and to identify possible explanatory factors. METHODS: Data from patients who underwent both phenotyping and genotyping were retrospectively collected. Complementary genetic analyses (genotyping of the variant c.557A>G and DPYD sequencing) were performed for patients with U ≥ 16 µg/L without any common variants. The characteristics of patients classified according to the congruence of the phenotyping and genotyping approaches were compared (Kruskal-Wallis test), and determinants of U levels were studied in the whole cohort (linear model). RESULTS: Among the 712 included patients, phenotyping and genotyping were discordant for 12.5%, with 63 (8.8%) having U ≥ 16 µg/L in the absence of a common variant. Complementary genetic investigations marginally reduced the percentage of discrepancies to 12.1%: Among the nine additional identified variants, only the c.557A>G variant, carried by three patients, had been previously reported to be associated with DPD deficiency. Liver dysfunction could explain certain discordances, as ASAT, ALP, GGT and bilirubin levels were significantly elevated, with more frequent liver metastases in patients with U ≥ 16 µg/L and the absence of a DPYD variant. The impact of cytolysis was confirmed, as ASAT levels were independently associated with increased U (p < 0.001). CONCLUSION: The frequent discordances between DPD phenotyping and genotyping approaches highlight the need to perform these two approaches to screen for all DPD deficiencies.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Humanos , Di-Hidrouracila Desidrogenase (NADP)/genética , Genótipo , Antimetabólitos Antineoplásicos , Capecitabina , Estudos Retrospectivos , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Fluoruracila
6.
ESMO Open ; 8(2): 101197, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989883

RESUMO

BACKGROUND: The main cause for fluoropyrimidine-related toxicity is deficiency of the metabolizing enzyme dihydropyrimidine dehydrogenase (DPD). In 2020, the European Medicines Agency (EMA) recommended two methods for pre-treatment DPD deficiency testing in clinical practice: phenotyping using endogenous uracil concentration or genotyping for DPYD risk variant alleles. This study assessed the DPD testing implementation status in Europe before (2019) and after (2021) the release of the EMA recommendations. METHODS: The survey was conducted from 16 March 2022 to 31 July 2022. An electronic form with seven closed and three open questions was e-mailed to 251 professionals with DPD testing expertise of 34 European countries. A descriptive analysis was conducted. RESULTS: We received 79 responses (31%) from 23 countries. Following publication of the EMA recommendations, 87% and 75% of the countries reported an increase in the amount of genotype and phenotype testing, respectively. Implementation of novel local guidelines was reported by 21 responders (27%). Countries reporting reimbursement of both tests increased in 2021, and only four (18%) countries reported no coverage for any testing type. In 2019, major implementation drivers were 'retrospective assessment of fluoropyrimidine-related toxicity' (39%), and in 2021, testing was driven by 'publication of guidelines' (40%). Although the major hurdles remained the same after EMA recommendations-'lack of reimbursement' (26%; 2019 versus 15%; 2021) and 'lack of recognizing the clinical relevance by medical oncologists' (25%; 2019 versus 8%; 2021)-the percentage of specialists citing these decreased. Following EMA recommendations, 25% of responders reported no hurdles at all in the adoption of the new testing practice in the clinics. CONCLUSIONS: The EMA recommendations have supported the implementation of DPD deficiency testing in Europe. Key factors for successful implementation were test reimbursement and clear clinical guidelines. Further efforts to improve the oncologists' awareness of the clinical relevance of DPD testing in clinical practice are needed.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Humanos , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Fluoruracila/uso terapêutico , Antimetabólitos Antineoplásicos/uso terapêutico , Estudos Retrospectivos , Di-Hidrouracila Desidrogenase (NADP)/genética , Europa (Continente)
7.
Cancer Rep (Hoboken) ; 6(2): e1704, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36806724

RESUMO

BACKGROUND: Fluoropyrimidines (FP) are among the most common class of prescribed anti-neoplastic drugs. This class has severe to moderate toxicity in around 10%-40% of those who take 5-fluorouracil (5-FU) or capecitabine for the treatment of cancer. In practice many patients with severe toxicities from FP use had dihydropyrimidine dehydrogenase (DPD) enzyme deficiency. Several studies have proposed DPD screening before treatment with 5-fluorouracil (5-FU) and capecitabine or other drugs belonging to the FP group. This study aims to assess the level of awareness and attitudes of oncology specialists in Saudi Arabia toward genetic screening for DPD prior to giving FP. This highlights the importance of health guidelines required for implementation in our health care system, as a framework to adopt testing as a regular practice in clinical care. Based on the findings in this study, guidelines have been suggested for the Middle East North Africa region. METHODS: A cross-sectional survey study was conducted during 2021 targeting oncologists and clinical pharmacists working in the oncology departments across Saudi Arabia. RESULTS: A total of 130 oncologists and pharmacists completed the questionnaire representing a response rate of 87%. Most of the respondents indicated that they prescribe FP in clinical practice, but 41% of respondents reported that they have never ordered a specific molecular test during their practice. Only 20% of respondents reported that they often screen for DPD deficiency prior to prescribing FP. Significantly higher rates of awareness of potential dihydropyrimidine dehydrogenase gene (DPYD) mutation were observed among respondents in governmental hospitals (81.1% vs. 47.4% in private hospitals), and among those with more years of practice (80.6% if 5 or more years of practice vs. 59.3% if less than 5 years of practice). Also, higher rates of observing the impact of DPD testing were present among respondents with a PharmD (35% vs. 11% for oncologists and 18% for other professions) and among those with 5 or more years of practice (24.6% vs. 7.7% among those with less than 5 years). CONCLUSION: While in some institutions there is a high level of awareness among oncology specialists in Saudi Arabia regarding the effect of the potentially serious DPD enzyme deficiency as a result of gene mutations, screening for these mutations prior to prescribing FP is not a routine practice in hospitals across the country. The findings of this study should promote personalized medicine with recognition of interpatient variability via DPD testing to manage the risks of FP prescribing more effectively in the Kingdom of Saudi Arabia.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Humanos , Di-Hidrouracila Desidrogenase (NADP)/genética , Capecitabina/efeitos adversos , Antimetabólitos Antineoplásicos/efeitos adversos , Arábia Saudita , Estudos Transversais , Fluoruracila/efeitos adversos , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Deficiência da Di-Hidropirimidina Desidrogenase/genética
8.
Eur J Cancer ; 181: 3-17, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621118

RESUMO

Fluoropyrimidine drugs (FP) are the backbone of many chemotherapy protocols for treating solid tumours. The rate-limiting step of fluoropyrimidine catabolism is dihydropyrimidine dehydrogenase (DPD), and deficiency in DPD activity can result in severe and even fatal toxicity. In this review, we survey the evidence-based pharmacogenetics and therapeutic recommendations regarding DPYD (the gene encoding DPD) genotyping and DPD phenotyping to prevent toxicity and optimize dosing adaptation before FP administration. The French experience of mandatory DPD-deficiency screening prior to initiating FP is discussed.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Humanos , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Fluoruracila , Antimetabólitos Antineoplásicos/uso terapêutico , Capecitabina , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo
9.
Br J Clin Pharmacol ; 89(2): 762-772, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36104927

RESUMO

AIMS: Determining dihydropyrimidine dehydrogenase (DPD) activity by measuring patient's uracil (U) plasma concentration is mandatory before fluoropyrimidine (FP) administration in France. In this study, we aimed to refine the pre-analytical recommendations for determining U and dihydrouracil (UH2 ) concentrations, as they are essential in reliable DPD-deficiency testing. METHODS: U and UH2 concentrations were collected from 14 hospital laboratories. Stability in whole blood and plasma after centrifugation, the type of anticoagulant and long-term plasma storage were evaluated. The variation induced by time and temperature was calculated and compared to an acceptability range of ±20%. Inter-occasion variability (IOV) of U and UH2 was assessed in 573 patients double sampled for DPD-deficiency testing. RESULTS: Storage of blood samples before centrifugation at room temperature (RT) should not exceed 1 h, whereas cold (+4°C) storage maintains the stability of uracil after 5 hours. For patients correctly double sampled, IOV of U reached 22.4% for U (SD = 17.9%, range = 0-99%). Notably, 17% of them were assigned with a different phenotype (normal or DPD-deficient) based on the analysis of their two samples. For those having at least one non-compliant sample, this percentage increased up to 33.8%. The moment of blood collection did not affect the DPD phenotyping result. CONCLUSION: Caution should be taken when interpreting U concentrations if the time before centrifugation exceeds 1 hour at RT, since it rises significantly afterwards. Not respecting the pre-analytical conditions for DPD phenotyping increases the risk of DPD status misclassification.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Humanos , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Di-Hidrouracila Desidrogenase (NADP)/genética , Uracila , Fenótipo , Plasma , Fluoruracila
10.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430399

RESUMO

Deficiency of dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, is associated with severe toxicity induced by the anti-cancer drug 5-Fluorouracil (5-FU). DPYD genotyping of four recommended polymorphisms is widely used to predict toxicity, yet their prediction power is limited. Increasing availability of next generation sequencing (NGS) will allow us to screen rare variants, predicting a larger fraction of DPD deficiencies. Genotype−phenotype correlations were investigated by performing DPYD exon sequencing in 94 patients assessed for DPD deficiency by the 5-FU degradation rate (5-FUDR) assay. Association of common variants with 5-FUDR was analyzed with the SNPStats software. Functional interpretation of rare variants was performed by in-silico analysis (using the HSF system and PredictSNP) and literature review. A total of 23 rare variants and 8 common variants were detected. Among common variants, a significant association was found between homozygosity for the rs72728438 (c.1974+75A>G) and decreased 5-FUDR. Haplotype analysis did not detect significant associations with 5-FUDR. Overall, in our sample cohort, NGS exon sequencing allowed us to explain 42.5% of the total DPD deficiencies. NGS sharply improves prediction of DPD deficiencies, yet a broader collection of genotype−phenotype association data is needed to enable the clinical use of sequencing data.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Humanos , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Fluoruracila/efeitos adversos , Fluoruracila/metabolismo , Floxuridina , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/metabolismo , Éxons
11.
Br J Clin Pharmacol ; 88(11): 4928-4932, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35939355

RESUMO

Measuring uracil (U) levels in plasma is a convenient surrogate to establish dihydropyrimidine dehydrogenase (DPD) status in patients scheduled with 5-fluorouracil (5-FU) or capecitabine. To what extent renal impairment could impact on U levels and thus be a confounding factor is a rising concern. Here, we report the case of a cancer patient with severe renal impairment scheduled for 5-FU-based regimen. Determination of his DPD status was complicated because of his condition and the influence of intermittent haemodialysis when monitoring U levels. The patient was initially identified as markedly DPD-deficient upon U measurement (i.e., U = 40 ng/mL), but further monitoring between and immediately after dialysis showed mild deficiency only (i.e., U = 34 and U = 19 ng/mL, respectively). Despite this discrepancy, a starting dose of 5-FU was cut by 50% upon treatment initiation. Tolerance was good and 5-FU dosing was next shifted to 25% reduction, then further shifted to normal dosing at the 5th course, with still no sign for drug-related toxicities. Further DPYD genotyping showed none of the four allelic variants usually associated with loss of DPD activity. Of note, the excellent tolerance upon standard dosing strongly suggests that this patient was actually not DPD-deficient, despite U values always above normal concentrations. This case report highlights how critical is the information regarding the renal function of patients with cancer when phenotyping DPD using U plasma as a surrogate, and that U accumulation in patients with such condition is likely to yield false-positive results.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Neoplasias , Insuficiência Renal , Antimetabólitos Antineoplásicos/efeitos adversos , Capecitabina , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Insuficiência Renal/complicações , Insuficiência Renal/etiologia , Uracila/uso terapêutico
12.
Clin Biochem ; 107: 1-6, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35709975

RESUMO

BACKGROUND: Uracil (U) plasma or serum levels can be used as surrogates of dihydropyrimidine dehydrogenase (DPD) activity, which is strongly related to the occurrence of severe or fatal toxicity after administration of fluoropyrimidines (FP) chemotherapy. Obtaining blood plasma or serum for U measurement usually requires a phlebotomy procedure by a qualified professional. An alternative to conventional blood drawn is the use of the Tasso-SST® device, which allows the collection of a small blood volume from skin capillaries. This study aimed to implement a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the determination of U in small serum samples and to compare U concentrations measured in venous plasma, obtained after phlebotomy, and serum obtained with the Tasso-SST® device. METHODS: Fifty microliter samples were prepared through simple protein precipitation with trichloroacetic acid. Chromatographic separation was performed with a porous graphitic carbon stationary phase and mass spectrometric detection used positive electrospray ionization. The assay was validated according to international guidelines. RESULTS: The linear range of the assay was 5-250 ng/mL. Measurement accuracy was in the range of 98.8-108.2%, inter-assay precision was 4.3-7.3%, and intra-assay precision was 3.4-6.1%. The average matrix effect was -6.42%. The extraction yield was 95-103.3%. U concentrations measured in serum obtained with the Tasso-SST® device and venous blood plasma were highly correlated (rs = 0.910, P < 0.0001), and no systematic or proportional bias between U levels measured in both matrices was found. CONCLUSIONS: The use of blood microsampling with the Tasso-SST® device is a useful alternative for the measurement of U and the identification of patients with DPD deficiency.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Uracila , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Humanos , Plasma/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
13.
Clin Transl Sci ; 15(5): 1104-1111, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34863048

RESUMO

Five-fluorouracil (5-FU) is a chemotherapeutic agent that is mainly metabolized by the rate-limiting enzyme dihydropyrimidine dehydrogenase (DPD). The DPD enzyme activity deficiency involves a wide range of severities. Previous studies have demonstrated the effect of a DPYD single nucleotide polymorphism on 5-FU efficacy and highlighted the importance of studying such genes for cancer treatment. Common polymorphisms of DPYD in European ancestry populations are less frequently present in Koreans. DPD is also responsible for the conversion of endogenous uracil (U) into dihydrouracil (DHU). We quantified U and DHU in plasma samples of healthy male Korean subjects, and samples were classified into two groups based on DHU/U ratio. The calculated DHU/U ratios ranged from 0.52 to 7.12, and the two groups were classified into the 10th percentile and 90th percentile for untargeted metabolomics analysis using liquid chromatography-quantitative time-of-flight-mass spectrometry. A total of 4440 compounds were detected and filtered out based on a coefficient of variation below 30%. Our results revealed that six metabolites differed significantly between the high activity group and low activity group (false discovery rate q-value < 0.05). Uridine was significantly higher in the low DPD activity group and is a precursor of U involved in pyrimidine metabolism; therefore, we speculated that DPD deficiency can influence uridine levels in plasma. Furthermore, the cutoff values for detecting DPD deficient patients from previous studies were unsuitable for Koreans. Our metabolomics approach is the first study that reported the DHU/U ratio distribution in healthy Korean subjects and identified a new biomarker of DPD deficiency.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase , Di-Hidrouracila Desidrogenase (NADP) , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Fluoruracila , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Uridina
14.
Acta Clin Belg ; 77(2): 346-352, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33423619

RESUMO

OBJECTIVES: Fluoropyrimidines such as 5-Fluorouracil (5-FU), capecitabine and tegafur are drugs that are often used in the treatment of maliginancies. The enzyme dihydropyrimidine dehydrogenase (DPD) is the first and rate limiting enzyme of 5-FU catabolism. Genetic variations within the DPYD gene (encoding for DPD protein) can lead to reduced or absent DPD activity. Treatment of DPD deficient patients with fluoropyrimidines can result in severe and, rarely, fatal toxicity. Screening for DPD deficiency should be implemented in practice. METHODS: The available methods in routine to screen for DPD deficiency were analyzed and discussed in several group meetings involving members of the oncological, genetic and toxicological societies in Belgium: targeted genotyping based on the detection of 4 DPYD variants and phenotyping, through the measurement of uracil and dihydrouracil/uracil ratio in plasma samples. RESULTS: The main advantage of targeted genotyping is the existence of prospectively validated genotype-based dosing guidelines. The main limitations of this approach are the relatively low sensitivity to detect total and partial DPD deficiency and the fact that this approach has only been validated in Caucasians so far. Phenotyping has a better sensitivity to detect total and partial DPD deficiency when performed in the correct analytical conditions and is not dependent on the ethnic origin of the patient. CONCLUSION: In Belgium, we recommend phenotype or targeted genotype testing for DPD deficiency before starting 5-FU, capecitabine or tegafur. We strongly suggest a stepwise approach using phenotype testing upfront because of the higher sensitivity and the lower cost to society.


Assuntos
Antimetabólitos Antineoplásicos , Deficiência da Di-Hidropirimidina Desidrogenase , Antimetabólitos Antineoplásicos/efeitos adversos , Bélgica , Capecitabina/efeitos adversos , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/tratamento farmacológico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Fluoruracila/efeitos adversos , Humanos , Tegafur/efeitos adversos
15.
Cancer Chemother Pharmacol ; 88(6): 1049-1053, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34515833

RESUMO

BACKGROUND: Pretherapeutic screening for dihydropyrimidine dehydrogenase (DPD) deficiency is recommended prior to the administration of fluoropyrimidine-based chemotherapy. However, the best strategy to identify DPD deficiency in End Stage Renal Disease (ESRD) patients is unknown. METHODS: We assessed the characteristics of both DPD phenotypes and DPYD genotypes in 20 dialyzed patients before and after dialysis session. The extent to which the concentrations of uracil [U] and dihydrouracil [UH2] were affected by dialysis was evaluated. RESULTS: Mean [U] was 14 ± 3.3 ng/ml before the dialysis session, and 7.9 ± 2.7 ng/ml after. Notably, mean [U] in 119 non-ESRD patients during the same timeline was 8.7 ± 3.9 ng/ml, which is similar to [U] values after dialysis session (p = 0.38). [U] values > 16 ng/ml were measured in 4 ESRD patients (20%), whereas the rate was 3.3% in the non-ESRD cohort. Whole gene sequencing did not reveal DPYD deleterious allelic variants in the 4 ESRD patients with [U] values > 16 ng/ml. The profile of [UH2] values during dialysis was similar to that of [U]: 385 ± 86 ng/ml before, and 185 ± 62 ng/ml after (mean reduction rate 42.5%). Thus, [UH2]:[U] ratio remained unaffected by dialysis, and was similar to the values in non-ESRD patients (22.4 ± 7.1). CONCLUSION: Phenotyping based on measuring plasma [U] before a dialysis sessions in ESRD patients is associated with an unacceptable high rate of false positives. The optimal strategy for the identification of patients with DPD deficiency in this population would be the monitor the [UH2]:[U] ratio, which remains unaffected.


Assuntos
Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Falência Renal Crônica/terapia , Programas de Rastreamento/métodos , Diálise Renal/efeitos adversos , Uracila/sangue , Estudos de Casos e Controles , Deficiência da Di-Hidropirimidina Desidrogenase/enzimologia , Deficiência da Di-Hidropirimidina Desidrogenase/etiologia , Reações Falso-Positivas , Seguimentos , Humanos , Falência Renal Crônica/patologia , Estudos Prospectivos
16.
ESMO Open ; 6(3): 100125, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33895696

RESUMO

Fluoropyrimidine-based chemotherapies are widely used to treat gastrointestinal tract, head and neck, and breast carcinomas. Severe toxicities mostly impact rapidly dividing cell lines and can occur due to the partial or complete deficiency in dihydropyrimidine dehydrogenase (DPD) catabolism. Since April 2020, the European Medicines Agency (EMA) recommends DPD testing before any fluoropyrimidine-based treatment. Currently, different assays are used to predict DPD deficiency; the two main approaches consist of either phenotyping the enzyme activity (directly or indirectly) or genotyping the four main deficiency-related polymorphisms associated with 5-fluorouracil (5-FU) toxicity. In this review, we focused on the advantages and limitations of these diagnostic methods: direct phenotyping by evaluation of peripheral mononuclear cell DPD activity (PBMC-DPD activity), indirect phenotyping assessed by uracil levels or UH2/U ratio, and genotyping DPD of four variants directly associated with 5-FU toxicity. The risk of 5-FU toxicity increases with uracil concentration. Having a pyrimidine-related structure, 5-FU is catabolised by the same physiological pathway. By assessing uracil concentration in plasma, indirect phenotyping of DPD is then measured. With this approach, in France, a decreased 5-FU dose is systematically recommended at a uracil concentration of 16 ng/ml, which may lead to chemotherapy under-exposure as uracil concentration is a continuous variable and the association between uracil levels and DPD activity is not clear. We aim herein to describe the different available strategies developed to improve fluoropyrimidine-based chemotherapy safety, how they are implemented in routine clinical practice, and the possible relationship with inefficacy mechanisms.


Assuntos
Antimetabólitos Antineoplásicos , Deficiência da Di-Hidropirimidina Desidrogenase , Antimetabólitos Antineoplásicos/toxicidade , Biomarcadores , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Humanos , Leucócitos Mononucleares
18.
Clin Transl Sci ; 14(4): 1338-1348, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33620159

RESUMO

Consensus guidelines exist for genotype-guided fluoropyrimidine dosing based on variation in the gene dihydropyrimidine dehydrogenase (DPYD). However, these guidelines have not been widely implemented in North America and most studies of pretreatment DPYD screening have been conducted in Europe. Given regional differences in treatment practices and rates of adverse events (AEs), we investigated the impact of pretreatment DPYD genotyping on AEs in a Canadian context. Patients referred for DPYD genotyping prior to fluoropyrimidine treatment were enrolled from December 2013 through November 2019 and followed until completion of fluoropyrimidine treatment. Patients were genotyped for DPYD c.1905+1G>A, c.2846A>T, c.1679T>G, and c.1236G>A. Genotype-guided dosing recommendations were informed by Clinical Pharmacogenetics Implementation Consortium guidelines. The primary outcome was the proportion of patients who experienced a severe fluoropyrimidine-related AE (grade ≥3, Common Terminology Criteria for Adverse Events version 5.0). Secondary outcomes included early severe AEs, severe AEs by toxicity category, discontinuation of fluoropyrimidine treatment due to AEs, and fluoropyrimidine-related death. Among 1394 patients, mean (SD) age was 64 (12) years, 764 (54.8%) were men, and 47 (3.4%) were DPYD variant carriers treated with dose reduction. Eleven variant carriers (23%) and 418 (31.0%) noncarriers experienced a severe fluoropyrimidine-related AE (p = 0.265). Six carriers (15%) and 284 noncarriers (21.1%) experienced early severe fluoropyrimidine-related AEs (p = 0.167). DPYD variant carriers treated with genotype-guided dosing did not experience an increased risk for severe AEs. Our data support a role for DPYD genotyping in the use of fluoropyrimidines in North America.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Di-Hidrouracila Desidrogenase (NADP)/genética , Neoplasias/tratamento farmacológico , Idoso , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacocinética , Canadá , Capecitabina/administração & dosagem , Capecitabina/efeitos adversos , Capecitabina/farmacocinética , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/efeitos adversos , Fluoruracila/farmacocinética , Heterozigoto , Humanos , Masculino , Oncologia/normas , Pessoa de Meia-Idade , Neoplasias/genética , Testes Farmacogenômicos/normas , Variantes Farmacogenômicos , Guias de Prática Clínica como Assunto , Medicina de Precisão/normas , Medicina de Precisão/estatística & dados numéricos , Estudos Retrospectivos
19.
Cancer Chemother Pharmacol ; 87(5): 657-663, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544210

RESUMO

Capecitabine is a fluoropyrimidine that is widely used as a cancer drug for the treatment of patients with a variety of cancers. Unfortunately, early onset, severe or life-threatening toxicity is observed in 19-32% of patients treated with capecitabine and 5FU. Dihydropyrimidine dehydrogenase (DPD) is the rate-limiting enzyme in the degradation of 5FU and a DPD deficiency has been shown to be a major determinant of severe fluoropyrimidine-associated toxicity. DPD is encoded by the DPYD gene and some of the identified variants have been described to cause DPD deficiency. Preemptive screening for DPYD gene alterations enables the identification of DPD-deficient patients before administering fluoropyrimidines. In this article, we describe the application of upfront DPD screening in Finnish patients, as a part of daily clinical practice, which was based on a comprehensive DPYD gene analysis, measurements of enzyme activity and plasma uracil concentrations. Almost 8% of the patients (13 of 167 patients) presented with pathogenic DPYD variants causing DPD deficiency. The DPD deficiency in these patients was further confirmed via analysis of the DPD activity and plasma uracil levels. Interestingly, we identified a novel intragenic deletion in DPYD which includes exon 4 in four patients (31% of patients carrying a pathogenic variant). The high prevalence of the exon 4 deletion among Finnish patients highlights the importance of full-scale DPYD gene analysis. Based on the literature and our own experience, genotype preemptive screening should always be used to detect DPD-deficient patients before fluoropyrimidine therapy.


Assuntos
Di-Hidrouracila Desidrogenase (NADP)/genética , Éxons , Adulto , Idoso , Idoso de 80 Anos ou mais , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Feminino , Finlândia , Deleção de Genes , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
20.
Acta Med Okayama ; 74(6): 557-562, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33361878

RESUMO

A 63-year-old Japanese male with stomach adenocarcinoma received oral 5-fluorouracil derivative, cisplatin and trastuzumab chemotherapy. On day 8, severe diarrhea and mucositis developed; chemotherapy was stopped. On day 14, the patient developed renal dysfunction and febrile neutropenia. He also suffered from pneumonia due to Candida albicans. Systemic symptoms improved after intensive conservative treatment. Best supportive care was continued until the patient died from gastric cancer. The dihydropyrimidine dehydroge-nase protein level was low at 3.18 U/mg protein. The result of DPYD genotyping revealed three variants at posi-tions 1615 (G > A), 1627 (A > G), and 1896 (T > C) in exons 13, 13, and 14, respectively.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antimetabólitos Antineoplásicos/efeitos adversos , Deficiência da Di-Hidropirimidina Desidrogenase/diagnóstico , Fluoruracila/efeitos adversos , Neoplasias Gástricas/tratamento farmacológico , Antimetabólitos Antineoplásicos/administração & dosagem , Contraindicações de Medicamentos , Evolução Fatal , Fluoruracila/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...